DocumentCode :
1124805
Title :
Relaxed Conditions for Sparse Signal Recovery With General Concave Priors
Author :
Trzasko, Joshua ; Manduca, Armando
Author_Institution :
Center for Adv. Imaging Res., Mayo Clinic, Rochester, MN, USA
Volume :
57
Issue :
11
fYear :
2009
Firstpage :
4347
Lastpage :
4354
Abstract :
The emerging theory of compressive or compressed sensing challenges the convention of modern digital signal processing by establishing that exact signal reconstruction is possible for many problems where the sampling rate falls well below the Nyquist limit. Following the landmark works of Candes and Donoho on the performance of l1-minimization models for signal reconstruction, several authors demonstrated that certain nonconvex reconstruction models consistently outperform the convex l1-model in practice at very low sampling rates despite the fact that no global minimum can be theoretically guaranteed. Nevertheless, there has been little theoretical investigation into the performance of these nonconvex models. In this paper, a notion of weak signal recoverability is introduced and the performance of nonconvex reconstruction models employing general concave metric priors is investigated under this model. The sufficient conditions for establishing weak signal recoverability are shown to substantially relax as the prior functional is parameterized to more closely resemble the targeted l0-model, offering new insight into the empirical performance of this general class of reconstruction methods. Examples of relaxation trends are shown for several different prior models.
Keywords :
minimisation; signal reconstruction; Nyquist limit; digital signal processing; general concave priors; l1-minimization models; nonconvex reconstruction models; relaxed conditions; signal reconstruction; sparse signal recovery; Compressed sensing; compressive sensing; restricted isometry property; signal recovery; weak recoverability;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2009.2025979
Filename :
5153291
Link To Document :
بازگشت