DocumentCode :
1125106
Title :
Experimental Investigation and Analytical Modeling of Excess Intensity Noise in Semiconductor Class-A Lasers
Author :
Baili, Ghaya ; Bretenaker, Fabien ; Alouini, Mehdi ; Morvan, Loïc ; Dolfi, Daniel ; Sagnes, Isabelle
Author_Institution :
Thales Res. & Technol. France, Palaiseau
Volume :
26
Issue :
8
fYear :
2008
fDate :
4/15/2008 12:00:00 AM
Firstpage :
952
Lastpage :
961
Abstract :
Excess intensity noise in a low-noise single-frequency class-A VECSEL is experimentally investigated over the frequency range 10 kHz-18 GHz. An analytical model is derived, based on multimode Langevin equations, to describe the observed laser excess noise over the whole bandwidth. From 50 MHz to 18 GHz, class-A operation leads to a shot noise limited relative intensity noise (RIN), namely -155 dB/Hz for 1-mA detected photocurrent, except at harmonics of the cavity free spectral range (FSR). At these frequencies, the excess noise is shown to be due to the amplified spontaneous emission contained in the nonlasing side modes. The measured levels of excess noise correspond to side mode suppression ratios (SMSRs) ranging from 70 to 90 dB, in agreement with the model. At low frequencies, 10 kHz-50 MHz, the observed excess noise spectrum has the expected Lorentzian shape. Its bandwidth increases with the pumping rate to an upper limit given by the cavity photon lifetime. Below this cutoff frequency, we show that the pump RIN is the dominant source of noise, while it is filtered by the laser dynamics above. Finally, our model permits to design a semiconductor class-A laser with an intensity noise limited to the shot noise level over the whole 10 kHz-18 GHz bandwidth.
Keywords :
gallium arsenide; indium compounds; laser cavity resonators; laser noise; optical pumping; quantum well lasers; shot noise; superradiance; surface emitting lasers; InGaAs; Lorentzian shape; amplified spontaneous emission; cavity free spectral range; cavity photon lifetime; cutoff frequency; excess intensity noise; frequency 10 kHz to 18 GHz; laser dynamics; low-noise single-frequency class-A VECSEL; multimode Langevin equations; nonlasing side modes; photocurrent; pumping rate; relative intensity noise; semiconductor class-A laser; shot noise; side mode suppression ratios; Analytical models; Bandwidth; Frequency; Laser modes; Laser noise; Low-frequency noise; Noise level; Noise shaping; Semiconductor device noise; Semiconductor lasers; Laser dynamics; laser noise; pump noise; relaxation oscillations;
fLanguage :
English
Journal_Title :
Lightwave Technology, Journal of
Publisher :
ieee
ISSN :
0733-8724
Type :
jour
DOI :
10.1109/JLT.2008.917756
Filename :
4484143
Link To Document :
بازگشت