Title :
Nanowire-Imposed Geometrical Control in Studies of Actomyosin Motor Function
Author :
Lard, Mercy ; ten Siethoff, Lasse ; Generosi, Johanna ; Persson, Malin ; Linke, Heiner ; Mansson, Alf
Author_Institution :
Div. of Solid State Phys., Lund Univ., Lund, Sweden
Abstract :
Recently, molecular motor gliding assays with actin and myosin from muscle have been realized on semiconductor nanowires coated with Al2O3. This opens for unique nanotechnological applications and novel fundamental studies of actomyosin motor function. Here, we provide a comparison of myosin-driven actin filament motility on Al2O3 to both nitrocellulose and trimethylchlorosilane derivatized surfaces. We also show that actomyosin motility on the less than 200 nm wide tips of arrays of Al2O3-coated nanowires can be used to control the number, and density, of myosin-actin attachment points. Results obtained using nanowire arrays with different inter-wire spacing are consistent with the idea that the actin filament sliding velocity is determined both by the total number and the average density of attached myosin heads along the actin filament. Further, the results are consistent with buckling of long myosin-free segments of the filaments as a factor underlying reduced velocity. On the other hand, the findings do not support a mechanistic role in decreasing velocity, of increased nearest neighbor distance between available myosin heads. Our results open up for more advanced studies that may use nanowire-based structures for fundamental investigations of molecular motors, including the possibility to create a nanowire-templated bottom-up assembly of 3D, muscle-like structures.
Keywords :
aluminium compounds; biochemistry; molecular biophysics; muscle; nanomedicine; nanowires; proteins; 3D muscle-like structures; Al2O3; actin filament sliding velocity; actomyosin motor function; buckling; molecular motor gliding assays; myosin-actin attachment; myosin-driven actin filament motility; myosin-free segments; nanotechnological applications; nanowire-based structures; nanowire-imposed geometrical control; nanowire-templated bottom-up assembly; nitrocellulose derivatized surfaces; semiconductor nanowires; trimethylchlorosilane derivatized surfaces; Aluminum oxide; Muscles; Nanobioscience; Nanowires; Resists; Surface treatment; Three-dimensional displays; Actin; aluminum oxide; in vitro motility assay; myosin; oxide-coated nanowire; sarcomere;
Journal_Title :
NanoBioscience, IEEE Transactions on
DOI :
10.1109/TNB.2015.2412036