Title :
Pattern classification using fuzzy relational calculus
Author :
Ray, Kumar S. ; Dinda, Tapan K.
Author_Institution :
Electron. & Commun. Sci. Unit, Indian Stat. Inst., Calcutta, India
fDate :
2/1/2003 12:00:00 AM
Abstract :
Our aim is to design a pattern classifier using fuzzy relational calculus (FRC) which was initially proposed by Pedrycz (1990). In the course of doing so, we first consider a particular interpretation of the multidimensional fuzzy implication (MFI) to represent our knowledge about the training data set. Subsequently, we introduce the notion of a fuzzy pattern vector to represent a population of training patterns in the pattern space and to denote the antecedent part of the said particular interpretation of the MFI. We introduce a new approach to the computation of the derivative of the fuzzy max-function and min-function using the concept of a generalized function. During the construction of the classifier based on FRC, we use fuzzy linguistic statements (or fuzzy membership function to represent the linguistic statement) to represent the values of features (e.g., feature F1 is small and F2 is big) for a population of patterns. Note that the construction of the classifier essentially depends on the estimate of a fuzzy relation ℜ between the input (fuzzy set) and output (fuzzy set) of the classifier. Once the classifier is constructed, the nonfuzzy features of a pattern can be classified. At the time of classification of the nonfuzzy features of the testpatterns, we use the concept of fuzzy masking to fuzzify the nonfuzzy feature values of the testpatterns. The performance of the proposed scheme is tested on synthetic data. Finally, we use the proposed scheme for the vowel classification problem of an Indian language.
Keywords :
computational linguistics; fuzzy set theory; knowledge representation; learning (artificial intelligence); pattern classification; relational algebra; Indian language; fuzzy linguistic statements; fuzzy max-function; fuzzy membership function; fuzzy min-function; fuzzy pattern vector; fuzzy relation; fuzzy relational calculus; fuzzy set; generalized function; knowledge representation; multidimensional fuzzy implication; nonfuzzy features; pattern classification; training data set; training patterns; vowel classification; Calculus; Face; Fuzzy logic; Fuzzy reasoning; Fuzzy sets; Humans; Multidimensional systems; Pattern classification; Testing; Training data;
Journal_Title :
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
DOI :
10.1109/TSMCB.2002.804361