DocumentCode :
1128020
Title :
A Canonical Space-Time State Space Model: State and Parameter Estimation
Author :
Dewar, Michael ; Kadirkamanathan, Visakan
Author_Institution :
Sheffield Univ., Sheffield
Volume :
55
Issue :
10
fYear :
2007
Firstpage :
4862
Lastpage :
4870
Abstract :
The maximum likelihood estimation of a dynamic spatiotemporal model is introduced, centred around the inclusion of a prior arbitrary spatiotemporal neighborhood description. The neighborhood description defines a specific parameterization of the state transition matrix, chosen on the basis of prior knowledge about the system. The model used is inspired by the spatiotemporal ARMA (STARMA) model, but the representation used is based on the standard state-space model. The inclusion of the neighborhood into an expectation-maximization based joint state and parameter estimation algorithm allows for accurate characterization of the spatiotemporal model. The process of including the neighborhood, and the effect it has on the maximum likelihood parameter estimate is described and demonstrated in this paper.
Keywords :
autoregressive moving average processes; expectation-maximisation algorithm; parameter estimation; state estimation; canonical space-time state space model; dynamic spatiotemporal model; dynamic spatiotemporal modeling; expectation-maximization algorithm; maximum likelihood estimation; parameter estimation; spatiotemporal ARMA; spatiotemporal neighborhood description; state estimation; Autoregressive processes; Iterative algorithms; Lattices; Maximum likelihood estimation; Parameter estimation; Signal processing; Spatiotemporal phenomena; State estimation; State-space methods; System identification; Dynamic spatiotemporal modeling; expectation-maximization (EM) algorithm; maximum likelihood parameter estimation; state-space;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2007.896245
Filename :
4305436
Link To Document :
بازگشت