DocumentCode :
1128489
Title :
Frequency estimation by principal component AR spectral estimation method without eigendecomposition
Author :
Kay, Steven M. ; Shaw, Arnab K.
Author_Institution :
Dept. of Electr. Eng., Rhode Island Univ., Kingston, RI, USA
Volume :
36
Issue :
1
fYear :
1988
fDate :
1/1/1988 12:00:00 AM
Firstpage :
95
Lastpage :
101
Abstract :
An eigenvalue filtering method is proposed that applies a transformation to an autocorrelation matrix, which has the effect of truncating the undesired eigenvalues so that the corresponding matrix function closely approximates the pseudoinverse. It is shown using a computer simulation that compared to the forward-backward method, the proposed method enhances the threshold in SNR by about 6-8 dB. Further improvement is obtained by a simple subset selection method and a second eigenvalue filtering iteration
Keywords :
correlation methods; digital simulation; eigenvalues and eigenfunctions; electrical engineering computing; filtering and prediction theory; spectral analysis; autocorrelation matrix; autoregressive spectral estimation; computer simulation; eigenvalue filtering method; frequency estimation; matrix function; pseudoinverse; subset selection method; transformation; Autocorrelation; Computer simulation; Eigenvalues and eigenfunctions; Filtering; Frequency estimation; Geophysical signal processing; Matrix decomposition; Signal processing; Signal to noise ratio; White noise;
fLanguage :
English
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
0096-3518
Type :
jour
DOI :
10.1109/29.1492
Filename :
1492
Link To Document :
بازگشت