Title :
Linear Regression With Gaussian Model Uncertainty: Algorithms and Bounds
Author :
Wiesel, Ami ; Eldar, Yonina C. ; Yeredor, Arie
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ, Ann Arbor, MI
fDate :
6/1/2008 12:00:00 AM
Abstract :
In this paper, we consider the problem of estimating an unknown deterministic parameter vector in a linear regression model with random Gaussian uncertainty in the mixing matrix. We prove that the maximum-likelihood (ML) estimator is a (de)regularized least squares estimator and develop three alternative approaches for finding the regularization parameter that maximizes the likelihood. We analyze the performance using the Cramer-Rao bound (CRB) on the mean squared error, and show that the degradation in performance due the uncertainty is not as severe as may be expected. Next, we address the problem again assuming that the variances of the noise and the elements in the model matrix are unknown and derive the associated CRB and ML estimator. We compare our methods to known results on linear regression in the error in variables (EIV) model. We discuss the similarity between these two competing approaches, and provide a thorough comparison that sheds light on their theoretical and practical differences.
Keywords :
Gaussian noise; least mean squares methods; matrix algebra; maximum likelihood estimation; regression analysis; signal processing; Cramer-Rao bound; deterministic parameter vector estimation; error in variable model; least squares estimator; linear regression model; maximum-likelihood estimator; mean squared error; mixing matrix; random Gaussian noise model uncertainty; statistical signal processing; Errors in variables (EIV); linear models; maximum-likelihood (ML) estimation; random model matrix; total least squares;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2007.914323