DocumentCode :
1131569
Title :
Constrained least squares detector for OFDM/SDMA-based wireless networks
Author :
Thoen, Steven ; Deneire, Luc ; Van der Perre, Liesbet ; Engels, Marc ; De Man, Hugo
Author_Institution :
Resonext Commun., Leuven, Belgium
Volume :
2
Issue :
1
fYear :
2003
Firstpage :
129
Lastpage :
140
Abstract :
The two major obstacles toward high-capacity indoor wireless networks are distortion due to the indoor channel and the limited bandwidth which necessitates a high spectral efficiency. A combined orthogonal frequency division multiplexing (OFDM)/spatial division multiple access (SDMA) approach can efficiently tackle both obstacles and paves the way for cheap, high-capacity wireless indoor networks. The channel distortion due to multipath propagation is efficiently mitigated with OFDM while the bandwidth efficiency can be increased with the use of SDMA. However, to keep the cost of an indoor wireless network comparable to its wired counterpart´s cost, low-complexity SDMA processors with good performance are of special interest. In this paper, we propose a new multiuser SDMA detector which is designed for constant modulus signals. This constrained least squares (CLS) receiver, which deterministically exploits the constant modulus nature of the subcarrier modulation to achieve better separation, is compared in terms of performance and complexity with the zero forcing (ZF) and the minimum mean square error (MMSE) receiver. Additionally, since the CLS detector relies on reliable channel knowledge at the receiver, we propose a strategy for estimating the multiple input multiple output (MIMO) channels. Simulations for a Hiperlan II-based case-study show that the CLS detector significantly outperforms the ZF detector and comes close to the performance of the MMSE detector for QPSK. For higher order M-PSK, the CLS detector outperforms the MMSF detector. Furthermore, the estimation complexity for the CLS detector is substantially lower than that for the MMSE detector which additionally requires estimation of the noise power.
Keywords :
MIMO systems; OFDM modulation; indoor radio; least squares approximations; multipath channels; phase shift keying; radio receivers; space division multiple access; CLS receiver; Hiperlan II-based case-study; MIMO channels; OFDM/SDMA-based wireless networks; bandwidth efficiency; channel distortion; combined OFDM/SDMA approach; combined orthogonal frequency division multiplexing/spatial division multiple access approach; constrained least squares detector; constrained least squares receiver; estimation complexity; high-capacity indoor wireless networks; higher order M-PSK; indoor channel; multipath propagation; multiple input multiple output channels; reliable channel knowledge; spectral efficiency; subcarrier modulation; Bandwidth; Costs; Detectors; Least squares methods; MIMO; Mean square error methods; Multiaccess communication; OFDM; Signal design; Wireless networks;
fLanguage :
English
Journal_Title :
Wireless Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-1276
Type :
jour
DOI :
10.1109/TWC.2002.806377
Filename :
1175126
Link To Document :
بازگشت