• DocumentCode
    1133722
  • Title

    GGD model of extrinsic information with dynamic parameter assignment for turbo decoder

  • Author

    Yang, Fengfan ; Le-Ngoc, Tho

  • Author_Institution
    Dept. of Electron. Eng., Nanjing Univ. of Aeronaut. & Astronaut., China
  • Volume
    3
  • Issue
    5
  • fYear
    2004
  • Firstpage
    1508
  • Lastpage
    1513
  • Abstract
    This letter proposes a strategy using a generalized Gaussian distribution (GGD) to characterize the extrinsic information generated from the constituent maximum a posteriori (MAP) decoders in order to improve the performance of an iterative turbo decoder for finite block lengths. A matching technique based on the measured moments and distance criterion is introduced to dynamically select the appropriate parameters of the GGD model for the extrinsic information in each iteration. The simulation results indicate that the proposed strategy can offer performance gain in medium block lengths over both additive white Gaussian noise and Rayleigh-fading channels.
  • Keywords
    AWGN channels; Gaussian distribution; Rayleigh channels; iterative decoding; maximum likelihood decoding; turbo codes; Rayleigh-fading channel; additive white Gaussian noise channel; finite block length; generalized Gaussian distribution; iterative turbo decoder; matching technique; maximum a posteriori decoder; AWGN; Additive white noise; Character generation; Convolution; Convolutional codes; Gaussian distribution; Iterative decoding; Performance gain; Rayleigh channels; Turbo codes; GGD; Turbo codes; characteristic function; extrinsic information; generalized Gaussian distribution;
  • fLanguage
    English
  • Journal_Title
    Wireless Communications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1536-1276
  • Type

    jour

  • DOI
    10.1109/TWC.2004.834700
  • Filename
    1343887