DocumentCode :
1134114
Title :
Nonlinear blind source separation using kernels
Author :
Martinez, Dominique ; Bray, Alistair
Author_Institution :
LORIA-CNRS, Vandoeuvre-les-Nancy, France
Volume :
14
Issue :
1
fYear :
2003
fDate :
1/1/2003 12:00:00 AM
Firstpage :
228
Lastpage :
235
Abstract :
We derive a new method for solving nonlinear blind source separation (BSS) problems by exploiting second-order statistics in a kernel induced feature space. This paper extends a new and efficient closed-form linear algorithm to the nonlinear domain using the kernel trick originally applied in support vector machines (SVMs). This technique could likewise be applied to other linear covariance-based source separation algorithms. Experiments on realistic nonlinear mixtures of speech signals, gas multisensor data, and visual disparity data illustrate the applicability of our approach.
Keywords :
blind source separation; covariance analysis; learning automata; BSS; SVM; closed-form linear algorithm; gas multisensor data; kernel induced feature space; linear covariance-based source separation; nonlinear blind source separation; nonlinear domain; nonlinear signal mixtures; second-order statistics; speech signals; support vector machines; visual disparity data; Blind source separation; Covariance matrix; Eigenvalues and eigenfunctions; Independent component analysis; Kernel; Random variables; Source separation; Speech; Statistics; Support vector machines;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2002.806624
Filename :
1176143
Link To Document :
بازگشت