Title :
Complete Characterization of Stable Bandlimited Systems Under Quantization and Thresholding
Author :
Boche, Holger ; Mönich, Ullrich J.
Author_Institution :
Dept. of Mobile Commun., Tech. Univ. Berlin, Berlin, Germany
Abstract :
In this paper, we analyze the approximation behavior of sampling series, where the sample values-taken equidistantly at Nyquist rate-are disturbed either by the nonlinear threshold operator or the nonlinear quantization operator. We perform the analysis for several spaces of bandlimited signals and completely characterize the spaces for which an approximation is possible. Additionally, we study the approximation of outputs of stable linear time-invariant systems by sampling series with disturbed samples for signals in PW pi 1. We show that there exist stable systems that become unstable under thresholding and quantization and that the approximation error is unbounded irrespective of how small the quantization step size is chosen. Further, we give a necessary and sufficient condition for the pointwise and the uniform convergence of the series. Surprisingly, this condition is the well-known condition for bounded-input bounded-output (BIBO) stability. Finally, we discuss the special case of finite-impulse-response (FIR) filters and give an upper bound for the approximation error.
Keywords :
FIR filters; approximation theory; bandlimited signals; quantisation (signal); signal sampling; stability; FIR filters; Nyquist rate; approximation error; bandlimited systems; bounded-input bounded-output stability; finite-impulse-response filters; linear time-invariant systems; nonlinear quantization operator; nonlinear threshold operator; Approximation; Shannon sampling series; linear time-invariant system; quantization; thresholding;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2009.2027738