• DocumentCode
    1134858
  • Title

    Properties of the singular value decomposition for efficient data clustering

  • Author

    Lee, Sangkeun ; Hayes, Monson H.

  • Author_Institution
    Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA, USA
  • Volume
    11
  • Issue
    11
  • fYear
    2004
  • Firstpage
    862
  • Lastpage
    866
  • Abstract
    We introduce some interesting properties of the singular value decomposition (SVD), and illustrate how they may be used in conjunction with the k-means algorithm for efficiently clustering a set of vectors. Specifically, we use the SVD to preprocess and sort the data vectors, and then use the k-means algorithm on the modified vectors. To illustrate the effectiveness of this approach, we compare it to the k-means algorithm without preprocessing and show that significant gains in clustering speed may be realized.
  • Keywords
    singular value decomposition; video signal processing; SVD; data clustering; k-means algorithm; singular value decomposition; video abstraction; Clustering algorithms; Euclidean distance; Helium; Image processing; Matrix decomposition; Signal processing; Signal processing algorithms; Singular value decomposition; Data clustering; key frame; singular value decomposition; video abstraction;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2004.833513
  • Filename
    1343984