DocumentCode :
1135516
Title :
Observability, Eigenvalues, and Kalman Filtering
Author :
Ham, Fredric M. ; Brown, R. Grover
Author_Institution :
Harris Corporation
Issue :
2
fYear :
1983
fDate :
3/1/1983 12:00:00 AM
Firstpage :
269
Lastpage :
273
Abstract :
In higher order Kalman filtering applications the analyst often has very little insight into the nature of the observability of the system. For example, there are situations where the filter may be estimating certain linear combinations of state variables quite well, but this is not apparent from a glance at the error covariance matrix. It is shown here that the eigenvalues and eigenvectors of the error covariance matrix, when properly normalized, can provide useful information about the observability of the system.
Keywords :
Covariance matrix; Eigenvalues and eigenfunctions; Filtering; Information analysis; Kalman filters; Nonlinear filters; Observability; Sorting; State estimation; System testing;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.1983.309446
Filename :
4102770
Link To Document :
بازگشت