Title :
Quadratic Statistical
Approximation for Parametric Yield Estimation of Analog/RF Integrated Circuits
Author :
Li, Xin ; Zhan, Yaping ; Pileggi, Lawrence T.
Author_Institution :
Carnegie Mellon Univ., Pittsburgh
fDate :
5/1/2008 12:00:00 AM
Abstract :
In this paper, we propose an efficient numerical algorithm for estimating the parametric yield of analog/RF circuits, considering large-scale process variations. Unlike many traditional approaches that assume normal performance distributions, the proposed approach is particularly developed to handle multiple correlated nonnormal performance distributions, thereby providing better accuracy than the traditional techniques. Starting from a set of quadratic performance models, the proposed parametric yield estimation conceptually maps multiple correlated performance constraints to a single auxiliary constraint by using a MAX operator. As such, the parametric yield is uniquely determined by the probability distribution of the auxiliary constraint and, therefore, can easily be computed. In addition, two novel numerical algorithms are derived from moment matching and statistical Taylor expansion, respectively, to facilitate efficient quadratic statistical MAX approximation. We prove that these two algorithms are mathematically equivalent if the performance distributions are normal. Our numerical examples demonstrate that the proposed algorithm provides an error reduction of 6.5 times compared to a normal-distribution-based method while achieving a runtime speedup of 10-20 times over the Monte Carlo analysis with 103 samples.
Keywords :
analogue integrated circuits; estimation theory; normal distribution; radiofrequency integrated circuits; MAX operator; analog/RF integrated circuit; error reduction; moment matching; normal distribution; parametric yield estimation; probability distribution; quadratic performance model; quadratic statistical MAX approximation; statistical Taylor expansion; Approximation algorithms; Circuits; Distributed computing; Large-scale systems; Monte Carlo methods; Probability distribution; Radio frequency; Runtime; Taylor series; Yield estimation; $MAX$ operator; Analog/RF circuits; parametric yield;
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
DOI :
10.1109/TCAD.2008.917582