DocumentCode :
1136468
Title :
High-Frequency Multimegawatt Polyphase Resonant Power Conditioning
Author :
Reass, William A. ; Baca, David M. ; Gribble, Robert F. ; Anderson, David E. ; Przybyla, Jan S ; Richardson, Robert ; Clare, Jon C. ; Bland, Michael J. ; Wheeler, Patrick W.
Author_Institution :
Los Alamos Nat. Lab., NM, USA
Volume :
33
Issue :
4
fYear :
2005
Firstpage :
1210
Lastpage :
1219
Abstract :
High-frequency multimegawatt polyphase resonant power conditioning techniques have recently been realized as a result of key component developments, cooperative efforts, research and development funding contracts, and newly applied engineering techniques. The first generation 10-MW pulsed converter-modulators, implemented at Los Alamos National Laboratory, Los Alamos, NM, are now utilized for the Oak Ridge National Laboratory, Oak Ridge, TN, Spallation Neutron Source (SNS) accelerator klystron radio frequency amplifier power systems [1]. Three different styles of polyphase resonant converter-modulators were developed for the SNS application. The various systems operate up to 140-kV, or 11-MW pulses, or up to 1.1 MW average power, all from a direct current input of +/- 1.2 kV. The component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in overall power conditioning topology. As an example, the 20-kHz high-voltage transformers are less than 1% the size and weight of equivalent 60-Hz versions. With resonant conversion techniques, load protective networks are not required. A shorted load de-tunes the resonance which results in limited power transfer. This provides for power conditioning systems that are inherently self-protective, with automatic fault “ride-through” capabilities. By altering and iterating the Los Alamos design, higher power and continuous wave power conditioning systems can now be realized with improved performance and flexibility. This paper will examine the SNS engineering data, briefly review the underlying theory of polyphase resonant conversion techniques, and apply this knowledge to future system topologies.
Keywords :
modulators; power transformers; resonant power convertors; 1.1 MW; 1.2 kV; 10 MW; 11 MW; 140 kV; 20 kHz; 60 Hz; Los Alamos National Laboratory; Oak Ridge National Laboratory; klystron radio frequency amplifier power systems; load protective networks; polyphase resonant power conditioning; power transfer; pulsed converter-modulators; spallation neutron source accelerator; transformers; Contracts; Laboratories; Power conditioning; Power engineering and energy; Power generation; Pulse amplifiers; Pulse generation; Pulse power systems; Research and development; Resonance; Insulated gate bipolar transistor (IGBT); modulator; nanocrystalline transformer; power conditioning; resonant converter;
fLanguage :
English
Journal_Title :
Plasma Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-3813
Type :
jour
DOI :
10.1109/TPS.2005.851977
Filename :
1495560
Link To Document :
بازگشت