• DocumentCode
    1136725
  • Title

    Performance Improvement of YBCO Coil for High-Field HTS-SMES Based on Homogenized Distribution of Magnetically-Mechanically Influenced Critical Current

  • Author

    Higashikawa, Kohei ; Nakamura, Taketsune ; Sugano, Michinaka ; Shikimachi, Koji ; Hirano, Naoki ; Nagaya, Shigeo

  • Author_Institution
    Dept. of Electr. Eng., Kyoto Univ., Kyoto
  • Volume
    18
  • Issue
    2
  • fYear
    2008
  • fDate
    6/1/2008 12:00:00 AM
  • Firstpage
    758
  • Lastpage
    761
  • Abstract
    Generally speaking for a HTS coil, perpendicular magnetic field to conductor´s broad surface should be suppressed as small as possible in relation to the magnetic anisotropy. This is a reason why toroidal coil with relatively many elementary coils is expected for HTS-SMES. On the other hand, from the point of view of the homogenization of critical current distribution in the coil, perpendicular field and parallel field should be balanced corresponding to the ratio of the magnetic anisotropy. This means that a certain level of the perpendicular field is effective to reduce local heat generation in the coil. Furthermore, this concept is especially reasonable for a high-field coil with usual winding method (flat-wise winding) because the perpendicular field does not induce hoop stress which decreases the critical current. In this paper, we show these findings through an optimal design of a MOCVD-YBCO toroidal coil for 2 GJ class SMES taking account of magnetically and mechanically influenced J - E characteristics.
  • Keywords
    barium compounds; critical currents; current distribution; high-temperature superconductors; magnetic anisotropy; superconducting coils; yttrium compounds; HTS coil; YBa2Cu3O7; critical current distribution; homogenization; hoop stress; local heat generation; magnetic anisotropy; toroidal coil; winding; Hoop stress; SMES; YBCO coated conductor; mechanical strain; optimal design;
  • fLanguage
    English
  • Journal_Title
    Applied Superconductivity, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1051-8223
  • Type

    jour

  • DOI
    10.1109/TASC.2008.921890
  • Filename
    4493373