DocumentCode :
1137906
Title :
The Discrete Fourier Transform Over Finite Rings with Application to Fast Convolution
Author :
Dubois, Eric ; Venetsanopoulos, Anastasios N.
Author_Institution :
INRS Telecommunications
Issue :
7
fYear :
1978
fDate :
7/1/1978 12:00:00 AM
Firstpage :
586
Lastpage :
593
Abstract :
Necessary and sufficient conditions for a direct sum of local rings to support a generalized discrete Fourier transform are derived. In particular, these conditions can be applied to any finite ring. The function O(N) defined by Agarwal and Burrus for transforms over ZN is extended to any finite ring R as O(R) and it is shown that R supports a length m discrete Fourier transform if and only if m is a divisor of O(R) This result is applied to the homomorphic images of rings-of algebraic integers.
Keywords :
Digital filtering; FFT; fast convolution; finite computation structures; generalized discrete Fourier transform; modular arithmetic; number theoretic transforms; Algebra; Convolution; Discrete Fourier transforms; Fast Fourier transforms; Filtering; Fourier transforms; Hardware; Modules (abstract algebra); Sufficient conditions; Zinc; Digital filtering; FFT; fast convolution; finite computation structures; generalized discrete Fourier transform; modular arithmetic; number theoretic transforms;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.1978.1675158
Filename :
1675158
Link To Document :
بازگشت