DocumentCode :
1138182
Title :
Dynamic focusing in ultrasound hyperthermia treatments using implantable hydrophone arrays
Author :
Seip, Ralf ; VanBaren, Philip ; Ebbini, Emad S.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
Volume :
41
Issue :
5
fYear :
1994
Firstpage :
706
Lastpage :
713
Abstract :
A prototype 16-element needle hydrophone array has been designed, fabricated and characterized. The primary use of this array is to provide acoustic feedback during ultrasound hyperthermia treatments. This feedback can be used to compensate for patient motion and tissue inhomogeneities by controlling the phased array driving patterns. It can also be used in adaptive dynamic focusing, a procedure which enables the phased array to focus at points away from specified control points. The hydrophone array consists of a PVDF sheet, which covers a silicon substrate carrier that contains the signal electrodes of the individual acoustic sensors. A complete description of the hydrophone array and its characteristics is given in this paper. The aberration correction and motion compensation algorithms are also described, and some experimental results are shown. Finally, a Taylor series based adaptive dynamic focusing method for phased arrays based on a set of discrete hydrophone array measurements is described. This algorithm does not require any prior knowledge of the applicator geometry and all the parameters needed for correction can be measured directly at the hydrophone array sensor locations.<>
Keywords :
acoustic arrays; biomedical ultrasonics; biothermics; focusing; hydrophones; motion estimation; prosthetics; radiation therapy; PVDF sheet; Si; Taylor series; aberration correction algorithms; acoustic feedback; acoustic sensors; adaptive dynamic focusing; implantable needle hydrophone arrays; motion compensation algorithms; phased array driving patterns; signal electrodes; silicon substrate carrier; tissue inhomogeneities; ultrasound hyperthermia treatments; Acoustic arrays; Adaptive arrays; Feedback; Hyperthermia; Needles; Phased arrays; Prototypes; Sensor arrays; Sonar equipment; Ultrasonic imaging;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/58.308507
Filename :
308507
Link To Document :
بازگشت