DocumentCode :
113887
Title :
Discontinuous Galerkin immerse finite volume element method for elliptic interface problems
Author :
Zhongyan Liu ; Huanzhen Chen
Author_Institution :
Coll. of Math. Sci., Shandong Normal Univ., Jinan, China
fYear :
2014
fDate :
26-28 April 2014
Firstpage :
115
Lastpage :
118
Abstract :
By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve the elliptic interface problems. The existence and uniqueness of the discrete scheme is proved, and an optimal energy-norm error estimate and L2-norm estimate for the numerical solution are obtained.
Keywords :
Galerkin method; elliptic equations; finite element analysis; finite volume methods; L2-norm estimation; discontinuous Galerkin immerse finite volume element method; discontinuous Galerkin immersed finite volume element method; discrete scheme; elliptic interface problems; immersed finite element space; numerical solution; optimal energy-norm error estimation; piecewise constant function space; test function space; trial function space; Approximation methods; Convergence; Educational institutions; Finite element analysis; Method of moments; Numerical models; Vectors; discontinuous Galerkin method; elliptic interface problems; error estimate; immersed finite volume method;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Science and Technology (ICIST), 2014 4th IEEE International Conference on
Conference_Location :
Shenzhen
Type :
conf
DOI :
10.1109/ICIST.2014.6920344
Filename :
6920344
Link To Document :
بازگشت