Title :
A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems
Author :
Segal, Mordechai ; Weinstein, Ehud
Author_Institution :
Dept. of Electron. Syst., Tel Aviv Univ., Israel
fDate :
5/1/1989 12:00:00 AM
Abstract :
A method is presented for evaluating the log-likelihood gradient (score), the Hessian, and the Fisher information matrix of the parameters of linear dynamic stochastic systems. The method incorporates the optimal Kalman smoothing equations and is therefore ideal for simultaneous state estimation and parameter identification. The result can be used for efficient implementation of gradient-based algorithms for maximum-likelihood identification of the unknown system parameters and for assessing the mean-square estimation accuracy
Keywords :
identification; information theory; linear systems; optimisation; parameter estimation; state estimation; stochastic systems; Fisher information matrix; Hessian; gradient-based algorithms; linear dynamic systems; log-likelihood gradient; maximum-likelihood identification; mean-square estimation accuracy; optimal Kalman smoothing equations; parameter identification; state estimation; stochastic systems; Covariance matrix; Equations; Geophysical signal processing; Linear systems; Polynomials; Signal processing algorithms; Speech; Stability; Testing; Vectors;
Journal_Title :
Information Theory, IEEE Transactions on