Title :
On the persistency of excitation in radial basis function network identification of nonlinear systems
Author :
Gorinevsky, Dimitry
Author_Institution :
Dept. of Mech. Eng., Toronto Univ., Ont., Canada
fDate :
9/1/1995 12:00:00 AM
Abstract :
Considers radial basis function (RBF) network approximation of a multivariate nonlinear mapping as a linear parametric regression problem. Linear recursive identification algorithms applied to this problem are known to converge, provided the regressor vector sequence has the persistency of excitation (PE) property. The main contribution of this paper is formulation and proof of PE conditions on the input variables. In the RBF network identification, the regressor vector is a nonlinear function of these input variables. According to the formulated condition, the inputs provide PE, if they belong to domains around the network node centers. For a two-input network with Gaussian RBF that have typical width and are centered on a regular mesh, these domains cover about 25% of the input domain volume. The authors further generalize the proposed solution of the standard RBF network identification problem and study affine RBF network identification that is important for affine nonlinear system control. For the affine RBF network, the author formulates and proves a PE condition on both the system state parameters and control inputs
Keywords :
feedforward neural nets; function approximation; identification; interpolation; nonlinear control systems; statistical analysis; affine network; affine nonlinear system control; linear parametric regression; linear recursive identification algorithms; multivariate nonlinear mapping; nonlinear systems; persistency of excitation; radial basis function network identification; regressor vector sequence; two-input network; Algorithm design and analysis; Artificial neural networks; Control systems; Convergence; Input variables; Intelligent networks; Nonlinear control systems; Nonlinear systems; Radial basis function networks; Vectors;
Journal_Title :
Neural Networks, IEEE Transactions on