Title :
New Classes of Radiometric and Combined Radiometric-Geometric Invariant Descriptors
Author :
Metari, Samy ; Deschênes, François
Author_Institution :
Dept. d´´Inf., Univ. de Sherbrooke, Sherbrooke, QC
fDate :
6/1/2008 12:00:00 AM
Abstract :
Real images can contain geometric distortions as well as photometric degradations. Analysis and characterization of those images without recourse to either restoration or geometric standardization is of great importance for the computer vision community as those two processes are often ill-posed problems. To this end, it is necessary to implement image descriptors that make it possible to identify the original image in a simple way independently of the imaging system and imaging conditions. Ideally, descriptors that capture image characteristics must be invariant to the whole range of geometric distortions and photometric degradations, such as blur, that may affect the image. In this paper, we introduce two new classes of radiometric and/or geometric invariant descriptors. The first class contains two types of radiometric invariant descriptors. The first of these type is based on the Mellin transform and the second one is based on central moments. Both descriptors are invariant to contrast changes and to convolution with any kernel having a symmetric form with respect to the diagonals. The second class contains two subclasses of combined invariant descriptors. The first subclass includes central-moment-based descriptors invariant simultaneously to horizontal and vertical translations, to uniform and anisotropic scaling, to stretching, to convolution, and to contrast changes. The second subclass contains central-complex-moment-based descriptors that are simultaneously invariant to similarity transformation and to contrast changes. We apply these invariant descriptors to the matching of geometric transformed and/or blurred images. Experimental results confirm both the robustness and the effectiveness of the proposed invariants.
Keywords :
computational geometry; computer vision; image matching; image restoration; transforms; Mellin transform; central-moment-based descriptor; combined radiometric-geometric invariant image descriptor; computer vision; image analysis; image matching; image restoration; real image geometric distortion; Combined radiometric-geometric invariants; Mellin transform; geometric invariants; image matching; moments; point spread function; radiometric invariants; Algorithms; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Models, Statistical; Numerical Analysis, Computer-Assisted; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2008.922410