DocumentCode :
1144442
Title :
Symmetry constraints for feedforward network models of gradient systems
Author :
Cardell, N. Scott ; Joerding, Wayne H. ; Li, Ying
Author_Institution :
Dept. of Econ., Washington State Univ., Pullman, WA, USA
Volume :
6
Issue :
5
fYear :
1995
fDate :
9/1/1995 12:00:00 AM
Firstpage :
1249
Lastpage :
1254
Abstract :
This paper concerns the use of a priori information on the symmetry of cross differentials available for problems that seek to approximate the gradient of a differentiable function. We derive the appropriate network constraints to incorporate the symmetry information, show that the constraints do not reduce the universal approximation capabilities of feedforward networks, and demonstrate how the constraints can improve generalization
Keywords :
feedforward neural nets; nonlinear differential equations; symmetry; cross differentials; differentiable function gradient approximation; feedforward neural network models; gradient systems; symmetry constraints; Current measurement; Differential equations; FETs; Geologic measurements; Geology; H infinity control; MOS devices; MOSFET circuits; Production; Voltage;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.410368
Filename :
410368
Link To Document :
بازگشت