Title :
Blind source separation in post-nonlinear mixtures using competitive learning, Simulated annealing, and a genetic algorithm
Author :
Rojas, Fernando ; Puntonet, Carlos G. ; Rodriguez-Alvarez, M. ; Rojas, Ignacio ; Martin-Clemente, Ruben
Author_Institution :
Dept. de Arquitectura y Tecnologia de Computadores, Univ. of Granada, Spain
Abstract :
This paper presents a new adaptive procedure for the linear and nonlinear separation of signals with nonuniform, symmetrical probability distributions, based on both simulated annealing and competitive learning methods by means of a neural network, considering the properties of the vectorial spaces of sources and mixtures, and using a multiple linearization in the mixture space. Moreover, the paper proposes the fusion of two important paradigms-genetic algorithms and the blind separation of sources in nonlinear mixtures. In nonlinear mixtures, optimization of the system parameters and, especially, the search for invertible functions is very difficult due to the existence of many local minima. The main characteristics of the methods are their simplicity and the rapid convergence experimentally validated by the separation of many kinds of signals, such as speech or biomedical data.
Keywords :
blind source separation; genetic algorithms; independent component analysis; simulated annealing; unsupervised learning; blind source separation; competitive learning; genetic algorithm; independent component analysis; neural network; nonlinear mixtures; signal processing; simulated annealing; symmetrical probability distributions; system parameters optimization; Biological neural networks; Blind source separation; Genetic algorithms; Independent component analysis; Learning systems; Principal component analysis; Probability distribution; Signal processing algorithms; Simulated annealing; Source separation;
Journal_Title :
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
DOI :
10.1109/TSMCC.2004.833297