DocumentCode :
1144800
Title :
Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture
Author :
Lundahl, Torbjörn ; Ohley, William J. ; Kay, Steven M. ; Siffert, Robert
Volume :
5
Issue :
3
fYear :
1986
Firstpage :
152
Lastpage :
161
Abstract :
Fractals have been shown to be useful in characterizing texture in a variety of contexts. Use of this methodology normally involves measurement of a parameter H, which is directly related to fractal dimension. In this work the basic theory of fractional Brownian motion is extended to the discrete case. It is shown that the power spectral density of such a discrete process is only approximately proportional to |f|a instead of in direct proportion as in the continuous case. An asymptotic Cramer-Rao bound is derived for the variance of an estimate of H. Subsequently, a maximum likelihood estimator (MLE) is developed to estimate H. It is shown that the variance of this estimator nearly achieves the minimum bound. A generation algorithm for discrete fractional motion is presented and used to demonstrate the capabilities of the MLE when the discrete fractional Brownian process is contaminated with additive Gaussian noise. The results show that even at signal-to-noise ratios of 30 dB, significant errors in estimation of H can result when noise is present. The MLE is then applied to X-ray images of the human calcaneus to demonstrate how the line-to-line formulation can be applied to the two-dimensional case. These results indicate that it has strong potential for quantifying texture.
Keywords :
Additive noise; Brownian motion; Estimation error; Fractals; Gaussian noise; Image texture; Maximum likelihood estimation; Motion estimation; Pollution measurement; Signal to noise ratio;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.1986.4307764
Filename :
4307764
Link To Document :
بازگشت