DocumentCode :
114513
Title :
State and parameter estimation of nonlinear systems: A multi-observer approach
Author :
Chong, Michelle S. ; Nesic, Dragan ; Postoyan, Romain ; Kuhlmann, Levin
Author_Institution :
Center for Control, Dynamical-Syst. & Comput. (CCDC), Univ. of California, Santa Barbara, Santa Barbara, CA, USA
fYear :
2014
fDate :
15-17 Dec. 2014
Firstpage :
1067
Lastpage :
1072
Abstract :
We present a multi-observer approach for the parameter and state estimation of continuous-time nonlinear systems. For nominal parameter values in the known parameter set, state observers are designed with a robustness property. At any time instant, one observer is selected by a given criterion to provide its state estimate and its corresponding nominal parameter value. Provided that a persistency of excitation condition holds, we guarantee the convergence of state and parameter estimates up to a given margin of error which can be reduced by increasing the number of observers. The potential computational burden of the scheme is eased by introducing a dynamic parameter re-sampling technique, where the nominal parameter values are iteratively updated using a zoom-in procedure on the parameter set. We illustrate the efficacy of the algorithm on a model of neural dynamics.
Keywords :
continuous time systems; nonlinear control systems; observers; parameter estimation; stability; continuous-time nonlinear systems; dynamic parameter resampling technique; excitation condition; multiobserver approach; nominal parameter values; parameter estimation; robustness property; state observers; zoom-in procedure; Brain modeling; Convergence; Monitoring; Nonlinear systems; Observers; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on
Conference_Location :
Los Angeles, CA
Print_ISBN :
978-1-4799-7746-8
Type :
conf
DOI :
10.1109/CDC.2014.7039523
Filename :
7039523
Link To Document :
بازگشت