Title :
Controlling stochastic growth processes on lattices: Wildfire management with robotic fire extinguishers
Author :
Somanath, Amith ; Karaman, Sertac ; Youcef-Toumi, Kamal
Author_Institution :
Authors are with Massachusetts Inst. of Technol., Cambridge, UK
Abstract :
Forest fires continue to cause considerable social and economic damage. Fortunately, the emergence of new robotics technologies, including capable autonomous unmanned aerial vehicles, may help improve wildfire management in the near future. In this paper, we characterize the number of vehicles required to combat wildfires, using a percolation-theoretic analysis that originated in the mathematical physics community. We model the wildfire as a stochastic growth process on a square lattice, where the local growth probabilities depend on the presence of robotic fire-extinguishing vehicles. We develop two control policies: First treats only a fraction of burning nodes at a given time, and the second treats burning nodes only at finite time intervals. We characterize the conditions under which these policies can stabilize a wildfire, i.e., ensure the fire stops eventually almost surely. We also provide computational results which demonstrate our theoretical analysis.
Keywords :
autonomous aerial vehicles; emergency services; probability; service robots; stochastic systems; forest fires; growth probability; mathematical physics community; percolation-theoretic analysis; robotic fire extinguishers; robotics technology; square lattice; stochastic growth process control; unmanned aerial vehicles; wildfire management; Fires; Lattices; Process control; Robots; Stochastic processes; Vegetation; Vehicles;
Conference_Titel :
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on
Conference_Location :
Los Angeles, CA
Print_ISBN :
978-1-4799-7746-8
DOI :
10.1109/CDC.2014.7039602