• DocumentCode
    1146414
  • Title

    A property of Jacobian matrices and some of its consequences

  • Author

    Fettweis, A. ; Bose, N.K.

  • Author_Institution
    Lehrstuhl fuer Nachrichtentechnik, Ruhr-Univ., Bochum, Germany
  • Volume
    50
  • Issue
    1
  • fYear
    2003
  • Firstpage
    153
  • Lastpage
    155
  • Abstract
    It is proved that the multidimensional differential operator is an annihilator of the adjoint matrix associated with a Jacobian matrix. Some of the consequences of this result to other distinguished matrices are pointed out and its relevance in the derivation of a multidimensional wave digital filter structure from a passive multidimensional Kirchhoff network is confirmed.
  • Keywords
    Jacobian matrices; filtering theory; multidimensional digital filters; wave digital filters; Jacobian matrix property; adjoint matrix annihilator; multidimensional differential operator; multidimensional wave digital filter structure; passive multidimensional Kirchhoff network; Circuits; Digital filters; Jacobian matrices; Multidimensional systems; Numerical analysis; Partial differential equations; Physics computing; Robustness; Signal processing;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7122
  • Type

    jour

  • DOI
    10.1109/TCSI.2002.807499
  • Filename
    1179161