DocumentCode :
114657
Title :
Direct filter tuning and optimization in multivariable identification
Author :
Romano, Rodrigo Alvite ; Pait, Felipe
Author_Institution :
Escola de Eng. Maua, Inst. Maua de Tecnol., Sao Caetano do Sul, Brazil
fYear :
2014
fDate :
15-17 Dec. 2014
Firstpage :
1798
Lastpage :
1803
Abstract :
Identification of linear time-invariant multivariable systems can best be understood as comprising three separate problems: selection of system model structure, filter design, and parameter estimation itself. A previous contribution approaches the first using matchable-observable models originally developed in the adaptive control literature. This paper uses direct or derivative-free optimization to design filters. The accuracy, robustness and moderate computational demands of the methods is demonstrated via simulations with randomly generated models. The results obtained are comparable or superior to the best results obtained using standard implementations of the algorithms described in the literature.
Keywords :
adaptive control; linear systems; multivariable control systems; optimisation; parameter estimation; adaptive control literature; computational demands; derivative-free optimization; direct filter tuning; direct optimization; filter design; linear time-invariant multivariable system identification; matchable-observable models; model structure selection; parameter estimation; randomly generated models; standard implementations; Autoregressive processes; Computational modeling; Mathematical model; Observability; Optimization; Parameter estimation; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on
Conference_Location :
Los Angeles, CA
Print_ISBN :
978-1-4799-7746-8
Type :
conf
DOI :
10.1109/CDC.2014.7039659
Filename :
7039659
Link To Document :
بازگشت