DocumentCode :
114680
Title :
Generalized gradient elements for nonsmooth optimal control problems
Author :
Khan, Kamil A. ; Barton, Paul I.
Author_Institution :
Process Syst. Eng. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA
fYear :
2014
fDate :
15-17 Dec. 2014
Firstpage :
1887
Lastpage :
1892
Abstract :
Recent advances in nonsmooth sensitivity analysis are extended to describe particular elements of Clarke´s generalized gradient for the nonsmooth objective function of a nonsmooth optimal control problem, in terms of states of an auxiliary dynamic system. The considered optimal control problem is a generic nonlinear open-loop problem, in which the cost function and the right-hand side function describing the system dynamics may each be nonsmooth. The desired generalized gradient elements are obtained under two parametric discretizations of the control function: a representation as a linear combination of basis functions, and a piecewise constant representation. If the objective function under either discretization is convex, then the corresponding generalized gradient elements are subgradients, without requiring any convexity assumptions on the system dynamics.
Keywords :
gradient methods; nonlinear control systems; open loop systems; optimal control; sensitivity analysis; Clarke generalized gradient elements; auxiliary dynamic system; control function; cost function; generic nonlinear open-loop problem; nonsmooth objective function; nonsmooth optimal control problem; nonsmooth sensitivity analysis; parametric discretizations; piecewise constant representation; right-hand side function; system dynamics; Linear programming; Nonlinear dynamical systems; Optimal control; Polynomials; Standards; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on
Conference_Location :
Los Angeles, CA
Print_ISBN :
978-1-4799-7746-8
Type :
conf
DOI :
10.1109/CDC.2014.7039673
Filename :
7039673
Link To Document :
بازگشت