Title :
Decoding of trellis-encoded signals in the presence of intersymbol interference and noise
Author :
Chevillat, Pierre R. ; Eleftheriou, Evangelos
Author_Institution :
IBM Zurich Res. Lab., Ruschlikon, Switzerland
fDate :
7/1/1989 12:00:00 AM
Abstract :
A novel receiver for data-transmission systems using trellis-coded modulation is investigated. It comprises a whitened-matched filter and a trellis decoder which combines the previously separated functions of equalization and trellis-coded modulation (TCM) decoding. TCM encoder, transmission channel, and whitened-matched filter are modeled by a single finite-state machine with combined intersymbol interference and code states. Using ISI-state truncation techniques and the set-partitioning principles inherent in TCM, a systematic method is then developed for reducing the state complexity of the corresponding ISI and code trellis. A modified branch metric is used for canceling those ISI terms which are not represented by the trellis states. The approach leads to a family of Viterbi decoders which offer a tradeoff between decoding complexity and performance. An adaptive version of the proposed receiver is discussed, and an efficient structure for reduced-state decoding is given. Simulation results are presented for channels with severe amplitude and phase distortion. It is shown that the proposed receiver achieves a significant gain in noise margin over a conventional receiver which uses separate linear equalization and TCM decoding
Keywords :
decoding; intersymbol interference; pulse-code modulation; PCM; TCM; branch metric; code states; data-transmission systems; finite-state machine; intersymbol interference; modulation; noise; trellis-encoded signals; whitened-matched filter; AWGN; Additive white noise; Decision feedback equalizers; Decoding; Filters; Gaussian noise; Intersymbol interference; Modulation coding; Phase distortion; Viterbi algorithm;
Journal_Title :
Communications, IEEE Transactions on