DocumentCode :
1149357
Title :
Recursive algorithms for the forward and inverse discrete cosine transform with arbitrary length
Author :
Wang, Zhongde ; Jullien, G.A. ; Miller, W.C.
Author_Institution :
VLSI Res. Group, Windsor Univ., Ont., Canada
Volume :
1
Issue :
7
fYear :
1994
fDate :
7/1/1994 12:00:00 AM
Firstpage :
101
Lastpage :
102
Abstract :
The authors first demonstrate that the forward and inverse discrete cosine transform (DCT, IDCT) can be represented by Chebyshev polynomials of the third and second kind, respectively. Then, they derive recursive algorithms for the DCT and IDCT with arbitrary length from the recursive formulae for the Chebyshev polynomials. The proposed algorithms are particularly suitable for VLSI implementation using array processing architectures.<>
Keywords :
Chebyshev approximation; VLSI; array signal processing; digital filters; discrete cosine transforms; filtering and prediction theory; parallel architectures; polynomials; recursive functions; Chebyshev polynomials; DCT; IDCT; VLSI implementation; array processing architectures; forward discrete cosine transform; inverse discrete cosine transform; recursive algorithms; Array signal processing; Chebyshev approximation; Computer architecture; Digital filters; Discrete cosine transforms; Image processing; Polynomials; Signal processing algorithms; Very large scale integration;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.311803
Filename :
311803
Link To Document :
بازگشت