Title :
On asymptotic ensemble weight enumerators of LDPC-like codes
Author :
Wang, Chung-Li ; Fossorier, Marc P C
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA
fDate :
8/1/2009 12:00:00 AM
Abstract :
For LDPC-like codes such as LDPC, GLDPC, and DGLDPC codes, it is well known that the error floor can be caused by the codewords of small weights or stopping sets of small sizes. In this paper, we investigate the computation of asymptotic weight enumerators such that it becomes a convenient tool to determine a good distribution of code ensembles. In addition, by analyzing the first order approximation, we derive a condition to obtain a negative asymptotic growth rate of the codewords of small linear-sized weights, which is an important constraint for distribution optimization. Also the weight enumerators of turbo and repeat-accumulate codes are investigated. Furthermore, we extend our results to nonbinary DGLDPC codes. Generalization to N-layer and convolutional code based LDPC-like codes are also developed.
Keywords :
approximation theory; convolutional codes; optimisation; parity check codes; turbo codes; DGLDPC codes; LDPC-like codes; N-layer code; asymptotic ensemble weight enumerators; codewords; convolutional code; distribution optimization; error floor; first order approximation; repeat-accumulate codes; small linear-sized weights; turbo codes; Binary codes; Bit error rate; Constraint optimization; Convolutional codes; Decoding; Distributed computing; Galois fields; H infinity control; Parity check codes; Turbo codes; Low-density parity-check (LDPC) codes, Generalized LDPC codes, Ensemble weight enumerator, Nonbinary LDPC codes, Degree distribution, Convex optimization, Dual variables.;
Journal_Title :
Selected Areas in Communications, IEEE Journal on
DOI :
10.1109/JSAC.2009.090808