Title :
Multimedia communications over cognitive radio networks for smart grid applications
Author :
Honggang Wang ; Yi Qian ; Sharif, Hamid
Author_Institution :
Univ. of Massachusetts Dartmouth, Dartmouth, MA, USA
Abstract :
Wireless networks play a major role in smart grid applications such as automatic meter reading, remote system monitoring, remote home/customer site monitoring, and equipment fault diagnosing. Many smart grid applications face harsh environmental conditions but have high reliability and low latency requirements. Many communication challenges posed by the smart grid applications require careful research and customized communication and networking solutions. For example, huge amount of data related to monitoring and control will be transmitted across smart grid wireless communication infrastructures, with intensive interference and increasing competition over the limited and crowded radio spectrum for the existing wireless networking standards. The opportunistic spectrum access with cognitive radios is a promising wireless technology to improve the frequency/spectrum utilization by detecting unoccupied spectrum holes of primary users and assigning them to secondary users. The versatile features of cognitive radio technology satisfy the requirements of smart grid communications. On the other hand, there are growing needs of multimedia applications via smart grid communication infrastructures that require large bandwidth and network resources. To meet the requirements of this important paradigm in smart grid communications, in this paper, we investigate the technical challenges and the solutions of cognitive radio networking with multimedia applications for smart grid communication infrastructures, and present a guideline for future smart grid multimedia communication infrastructure design.
Keywords :
cognitive radio; fault diagnosis; multimedia communication; radio networks; radio spectrum management; smart power grids; automatic meter reading; cognitive radio networks; communication challenges; crowded radio spectrum; equipment fault diagnosing; frequency utilization improvement; harsh environmental conditions; limited radio spectrum; multimedia communications; opportunistic spectrum access; primary users; remote customer site monitoring; remote home site monitoring; remote system monitoring; secondary users; smart grid communication infrastructures; spectrum utilization improvement; unoccupied spectrum hole detection; wireless networking standards; Automatic meter reading; Cognitive radio; Monitoring; Multimedia communication; Smart grids;
Journal_Title :
Wireless Communications, IEEE
DOI :
10.1109/MWC.2013.6590059