Title :
Improved Noninvasive Intracranial Pressure Assessment With Nonlinear Kernel Regression
Author :
Xu, Peng ; Kasprowicz, Magdalena ; Bergsneider, Marvin ; Hu, Xiao
Author_Institution :
Dept. of Neurosurg., Univ. of California, Los Angeles, CA, USA
fDate :
7/1/2010 12:00:00 AM
Abstract :
The only established technique for intracranial pressure (ICP) measurement is an invasive procedure requiring surgically penetrating the skull for placing pressure sensors. However, there are many clinical scenarios where a noninvasive assessment of ICP is highly desirable. With an assumption of a linear relationship among arterial blood pressure (ABP), ICP, and flow velocity (FV) of major cerebral arteries, an approach has been previously developed to estimate ICP noninvasively, the core of which is the linear estimation of the coefficients f between ABP and ICP from the coefficients w calculated between ABP and FV. In this paper, motivated by the fact that the relationships among these three signals are so complex that simple linear models may be not adequate to depict the relationship between these two coefficients, i.e., f and w , we investigate the adoption of several nonlinear kernel regression approaches, including kernel spectral regression (KSR) and support vector machine (SVM) to improve the original linear ICP estimation approach. The ICP estimation results on a dataset consisting of 446 entries from 23 patients show that the mean ICP error by the nonlinear approaches can be reduced to below 6.0 mmHg compared to 6.7 mmHg of the original approach. The statistical test also demonstrates that the ICP error by the proposed nonlinear kernel approaches is statistically smaller than that estimated with the original linear model (p <; 0.05). The current result confirms the potential of using nonlinear regression to achieve more accurate noninvasive ICP assessment.
Keywords :
blood pressure measurement; blood vessels; brain; estimation theory; medical signal processing; pressure sensors; regression analysis; statistical analysis; support vector machines; surgery; ICP; arterial blood pressure; flow velocity; improved noninvasive intracranial pressure assessment; intracranial pressure measurement; kernel spectral regression; nonlinear kernel regression; pressure sensors; statistical test; support vector machine; Arterial blood pressure (ABP); cerebral blood flow velocity (FV); intracranial pressure (ICP); noninvasive; nonlinear kernel regression; Blood Pressure; Humans; Intracranial Pressure; Models, Theoretical;
Journal_Title :
Information Technology in Biomedicine, IEEE Transactions on
DOI :
10.1109/TITB.2009.2027317