DocumentCode :
1153307
Title :
Partial BIST insertion to eliminate data correlation
Author :
Zhang, Qiushuang ; Harris, Ian
Author_Institution :
Dept. of Electr. & Comput. Eng., Massachusetts Univ., Amherst, MA, USA
Volume :
22
Issue :
3
fYear :
2003
fDate :
3/1/2003 12:00:00 AM
Firstpage :
374
Lastpage :
379
Abstract :
A new partial built-in self-test (BIST) insertion approach based on eliminating data correlation to improve pseudorandom testability is presented. Data correlation causes the circuit to be in a subset of states more or less frequently, which leads to low fault coverage in pseudorandom test. One important cause of correlation is reconvergent fanout. Incorporating BIST test flip-flops into reconvergent paths will break correlation, however, breaking all reconvergent fanout is unnecessary since some reconvergent fanout results in negligible correlation. We introduce a metric to determine the degree of correlation caused by a set of reconvergent fanout paths. We use this metric to identify problematic reconvergent fanout which must be broken through partial BIST insertion. Based on this metric, we provide an exact method and a heuristic method to measure the data correlation. We provide an algorithm to break high correlation reconvergent paths. Our algorithm provides high fault coverage while selecting fewer BIST flip-flops than required using loop-breaking techniques. Experimental results produced using our exact algorithm rank on average among the top 11.6% of all possible solutions with the same number of flip-flops.
Keywords :
built-in self test; correlation methods; flip-flops; data correlation metric; fault coverage; flip-flop; heuristic method; partial built-in self-test insertion algorithm; pseudorandom testability; reconvergent fanout; Automatic testing; Built-in self-test; Circuit faults; Circuit testing; Costs; Flip-flops; Hardware; Registers; Sequential analysis; Test equipment;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/TCAD.2002.807893
Filename :
1182083
Link To Document :
بازگشت