DocumentCode
1153777
Title
Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo
Author
Zio, Enrico ; Zoia, Andrea
Author_Institution
Energy Dept., Politec. di Milano, Milan
Volume
58
Issue
1
fYear
2009
fDate
3/1/2009 12:00:00 AM
Firstpage
123
Lastpage
131
Abstract
In this work, the reversible-jump Markov chain Monte Carlo technique is applied for identifying the parameters governing stochastic processes of component degradation. Two case studies are examined concerning the evolution of deteriorating systems whose parameters undergo step changes in time. The method turns out to be capable of identifying the instances of change in behavior, and of estimating the parameter values. A Bayesian updating strategy is proposed to refine the parameter estimates as new data are made available.
Keywords
Markov processes; Monte Carlo methods; belief networks; parameter estimation; Bayesian inference; Monte Carlo; component degradation; parameter identification; reversible-jump Markov Chain; stochastic processes; Bayesian inference; parameter changes estimation; reversible-jump Markov chain Monte Carlo;
fLanguage
English
Journal_Title
Reliability, IEEE Transactions on
Publisher
ieee
ISSN
0018-9529
Type
jour
DOI
10.1109/TR.2008.2011674
Filename
4781596
Link To Document