• DocumentCode
    1153777
  • Title

    Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo

  • Author

    Zio, Enrico ; Zoia, Andrea

  • Author_Institution
    Energy Dept., Politec. di Milano, Milan
  • Volume
    58
  • Issue
    1
  • fYear
    2009
  • fDate
    3/1/2009 12:00:00 AM
  • Firstpage
    123
  • Lastpage
    131
  • Abstract
    In this work, the reversible-jump Markov chain Monte Carlo technique is applied for identifying the parameters governing stochastic processes of component degradation. Two case studies are examined concerning the evolution of deteriorating systems whose parameters undergo step changes in time. The method turns out to be capable of identifying the instances of change in behavior, and of estimating the parameter values. A Bayesian updating strategy is proposed to refine the parameter estimates as new data are made available.
  • Keywords
    Markov processes; Monte Carlo methods; belief networks; parameter estimation; Bayesian inference; Monte Carlo; component degradation; parameter identification; reversible-jump Markov Chain; stochastic processes; Bayesian inference; parameter changes estimation; reversible-jump Markov chain Monte Carlo;
  • fLanguage
    English
  • Journal_Title
    Reliability, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9529
  • Type

    jour

  • DOI
    10.1109/TR.2008.2011674
  • Filename
    4781596