Title :
Graph-Based Algorithms for Boolean Function Manipulation
Author :
Bryant, Randal E.
Author_Institution :
Department of Computer Science, Carnegie-Mellon University
Abstract :
In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on the ordering of decision variables in the graph. Although a function requires, in the worst case, a graph of size exponential in the number of arguments, many of the functions encountered in typical applications have a more reasonable representation. Our algorithms have time complexity proportional to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large. We present experimental results from applying these algorithms to problems in logic design verification that demonstrate the practicality of our approach.
Keywords :
Boolean functions; binary decision diagrams; logic design verification; symbolic manipulation; Algebra; Application software; Artificial intelligence; Boolean functions; Combinatorial mathematics; Computer science; Data structures; Digital systems; Logic design; Logic testing; Boolean functions; binary decision diagrams; logic design verification; symbolic manipulation;
Journal_Title :
Computers, IEEE Transactions on
DOI :
10.1109/TC.1986.1676819