DocumentCode :
1155317
Title :
Complexity of Matrix Product on a Class of Orthogonally Connected Systolic Arrays
Author :
Melkemi, Lamine ; Tchuente, Maurice
Author_Institution :
Laboratoire TIM3
Issue :
5
fYear :
1987
fDate :
5/1/1987 12:00:00 AM
Firstpage :
615
Lastpage :
619
Abstract :
This correspondence studies the time complexity of the parallel computation of the product C = A.B of two dense square matrices A, B of order n, on a class of rectangular orthogonally connected systolic arrays, which are the two-dimensional extensions of the classical pipeline scheme. Such arrays are composed of multiply-add cells without local memory, and, as C is computed, the coefficients cij move vertically, whereas aik and bkj move horizontally in opposite directions. We first introduce a combinatorial formulation of the problem. Then we show that, if the cycle-time of a multiply-add cell is taken as time unit, and if T(p, m) denotes the running time of an optimal algorithm associated with an array of size p x m, then Minpm T(p,m) = 3n -2, and the minimum value of p.m for which this bound is tight is n.n [resp. n(n + 1)] if n is odd (resp. even). When compared to the algorithms previously proposed for the class of arrays based on cells without local memory, the solutions exhibited here appear to be the best, because they are the only ones which run in time T < = 3n -2 on a network of size S < = n(n + 1).
Keywords :
Combinatorial formulation; matrix multiplication; multiply-add cell; optimal algorithm; parallel computation; systolic array; time-complexity; Bandwidth; Concurrent computing; Delay effects; Pipelines; Systolic arrays; Very large scale integration; Combinatorial formulation; matrix multiplication; multiply-add cell; optimal algorithm; parallel computation; systolic array; time-complexity;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.1987.1676946
Filename :
1676946
Link To Document :
بازگشت