Author :
Blanchini, Franco ; Miani, Stefano ; Mesquine, Fouad
Abstract :
In this paper, we investigate the problem of designing a switching compensator for a plant switching amongst a (finite) family of given configurations (A i,B i,C i). We assume that switching is uncontrolled, namely governed by some arbitrary switching rule, and that the controller has the information of the current configuration i . As a first result, we provide necessary and sufficient conditions for the existence of a switching compensator such that the closed-loop plant is stable under arbitrary switching. These conditions are based on a separation principle, precisely, the switching stabilizing control can be achieved by separately designing an observer and an estimated state (dynamic) compensator. These conditions are associated with (non-quadratic) Lyapunov functions. In the quadratic framework, similar conditions can be given in terms of LMIs which provide a switching controller which has the same order of the plant. As a second result, we furnish a characterization of all the stabilizing switching compensators for such switching plants. We show that, if the necessary and sufficient conditions are satisfied then, given any arbitrary family of compensators Ki(s), each one stabilizing the corresponding LTI plant (A i,B i,C i) for fixed i, there exist suitable realizations for each of these compensators which assure stability under arbitrary switching.
Keywords :
Lyapunov methods; linear systems; observers; time-varying systems; LMIs; Lyapunov functions; arbitrary switching; closed-loop plant; estimated state compensator; linear switching systems; observer; plant switching; separation principle; sufficient conditions; switching compensator; switching controller; switching rule; Control design; Control systems; Control theory; Logic; Lyapunov method; Observers; Stability; State estimation; Sufficient conditions; Switching systems; Lyapunov functions; Youla–Kucera parametrization; separation principle; switching systems;