DocumentCode :
1156436
Title :
Error estimates for Yee´s method on non-uniform grids
Author :
Monk, Peter ; Suli, Endre
Author_Institution :
Dept. of Math. Sci., Delaware Univ., Newark, DE, USA
Volume :
30
Issue :
5
fYear :
1994
fDate :
9/1/1994 12:00:00 AM
Firstpage :
3200
Lastpage :
3203
Abstract :
In this paper we analyze the order of convergence of Yee´s finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh
Keywords :
Maxwell equations; convergence of numerical methods; error analysis; finite difference time-domain analysis; FDTD method; Yee´s method; convergence; error estimates; finite difference time domain method; linear isotropic homogeneous Maxwell system; local truncation error; nonuniform grids; rectangular grids; second order convergent method; supra-convergence; Boundary conditions; Convergence; Dielectrics; Error analysis; Finite difference methods; Finite wordlength effects; Grid computing; Laboratories; Magnetic fields; Time domain analysis;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/20.312618
Filename :
312618
Link To Document :
بازگشت