DocumentCode :
1157051
Title :
Two-dimensional ultrasound receive array using an angle-tuned Fabry-Perot polymer film sensor for transducer field characterization and transmission ultrasound imaging
Author :
Beard, Paul Christopher
Author_Institution :
Dept. of Medical Phys. & Bioengineering, Univ. Coll. London, UK
Volume :
52
Issue :
6
fYear :
2005
fDate :
6/1/2005 12:00:00 AM
Firstpage :
1002
Lastpage :
1012
Abstract :
A 2-D optical ultrasound receive array has been investigated. The transduction mechanism is based upon the detection of acoustically induced changes in the optical thickness of a thin polymer film acting as a Fabry-Perot sensing interferometer (FPI). By illuminating the sensor with a large-area laser beam and mechanically scanning a photodiode across the reflected output beam, while using a novel angle-tuned phase bias control system to optimally set the FPI working point, a notional 2-D ultrasound array was synthesized. To demonstrate the concept, 1-D and 2-D ultrasound field distributions produced by planar 3.5-MHz and focused 5-MHz PZT ultrasound transducers were mapped. The system was also evaluated by performing transmission ultrasound imaging of a spatially calibrated target. The "array" aperture, defined by the dimensions of the incident optical field, was elliptical, of dimensions 16 /spl times/ 12 mm and spatially sampled in steps of 0.1 mm or 0.2 mm. Element sizes, defined by the photodiode aperture, of 0.8, 0.4, and 0.2 mm were variously used for these experiments. Two types of sensor were evaluated. One was a discrete 75-/spl mu/m-thick polyethylene terephthalate FPI bonded to a polymer backing stub which had a wideband peak noise-equivalent pressure of 6.5 kPa and an acoustic bandwidth 12 MHz. The other was a 40-/spl mu/m Parylene film FPI which was directly vacuum-deposited onto a glass backing stub and had an NEP of 8 kPa and an acoustic bandwidth of 17.5 MHz. It is considered that this approach offers an alternative to piezoelectric ultrasound arrays for transducer field characterization, transmission medical and industrial ultrasound imaging, biomedical photoacoustic imaging, and ultrasonic nondestructive testing.
Keywords :
Fabry-Perot interferometers; optical sensors; photoacoustic effect; piezoelectric devices; piezoelectric materials; polymer films; ultrasonic imaging; ultrasonic transducer arrays; 0.2 mm; 0.4 mm; 0.8 mm; 12 mm; 16 mm; 2-D ultrasound array; 3.5 MHz; 5 MHz; 6.5 kPa; 75 mum; Fabry-Perot sensing interferometer; PZT; PZT ultrasound transducers; Parylene film; PbZrO3TiO3; acoustic bandwidth; angle-tuned Fabry-Perot polymer film sensor; angle-tuned phase bias control system; array aperture; biomedical photoacoustic imaging; glass backing stub; incident optical field; industrial ultrasound imaging; large-area laser beam; mechanical scanning; optical thickness; photodiode aperture; piezoelectric ultrasound arrays; polyethylene terephthalate; polymer backing stub; reflected output beam; thin polymer film; transducer field characterization; transduction mechanism; transmission medical imaging; transmission ultrasound imaging; two-dimensional ultrasound receive array; ultrasonic nondestructive testing; ultrasound field distributions; vacuum-deposited film; wideband peak noise-equivalent pressure; Fabry-Perot; Image sensors; Optical arrays; Optical imaging; Polymer films; Sensor arrays; Sensor phenomena and characterization; Ultrasonic imaging; Ultrasonic transducer arrays; Ultrasonic transducers;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/TUFFC.2005.1504022
Filename :
1504022
Link To Document :
بازگشت