DocumentCode :
115720
Title :
Unsupervised inverse reinforcement learning with noisy data
Author :
Surana, Amit
Author_Institution :
United Technol. Res. Center, East Hartford, CT, USA
fYear :
2014
fDate :
15-17 Dec. 2014
Firstpage :
4938
Lastpage :
4945
Abstract :
In this paper we propose an approach for unsupervised Inverse Reinforcement Learning (IRL) with noisy data using a hidden variable Markov Decision Processes (hMDP) representation. hMDP accounts for observation uncertainty by using a hidden state variable. We develop a nonparametric Bayesian IRL technique for hMDP based on Dirichlet Processes mixture model. We provide an efficient Markov Chain Monte Carlo based sampling algorithm whereby one can automatically cluster noisy data into different behaviors, and estimate the underlying reward parameters per cluster. We demonstrate our approach for unsupervised learning, and prediction and classification of agent behaviors in a simulated surveillance scenario.
Keywords :
Bayes methods; Monte Carlo methods; hidden Markov models; image classification; mixture models; nonparametric statistics; parameter estimation; pattern clustering; sampling methods; unsupervised learning; Dirichlet process mixture model; Markov Chain Monte Carlo based sampling algorithm; agent behavior classification; agent behavior prediction; hMDP; hidden state variable; hidden variable Markov decision process representation; noisy data; noisy data clustering; nonparametric Bayesian IRL technique; observation uncertainty; reward parameter estimation; simulated surveillance scenario; unsupervised inverse reinforcement learning; Bayes methods; Data models; Hidden Markov models; Manganese; Markov processes; Noise measurement; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on
Conference_Location :
Los Angeles, CA
Print_ISBN :
978-1-4799-7746-8
Type :
conf
DOI :
10.1109/CDC.2014.7040160
Filename :
7040160
Link To Document :
بازگشت