DocumentCode :
1157528
Title :
A note on the survival time of a dynamic system in an interval
Author :
Lefebvre, Mario
Author_Institution :
Dept. de Math. Appliquees, Ecole Polytech., Montreal, Que., Canada
Volume :
37
Issue :
5
fYear :
1992
fDate :
5/1/1992 12:00:00 AM
Firstpage :
618
Lastpage :
620
Abstract :
The one-dimensional system dx(t=bu(t)dt+(ct 2)1/2dW(t), where b (≠0) and c (⩾0) are real constants and W(t ) is a standard Brownian motion, is considered. The aim is to obtain the control u* that minimizes the expected value of a cost function with terminal cost equal to 0 or +∞ depending on whether the survival time in a given region is at least equal to or less than a fixed time
Keywords :
Brownian motion; minimisation; optimal control; time-varying systems; cost function; dynamic system; expected value; minimisation; one-dimensional system; optimal control; standard Brownian motion; survival time; time-varying systems; Control systems; Cost function; Differential equations; Gaussian processes; Minimax techniques; Motion control; Polynomials; Robustness; Stability; Symmetric matrices;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.135497
Filename :
135497
Link To Document :
بازگشت