• DocumentCode
    1158
  • Title

    Model-Based MR Parameter Mapping With Sparsity Constraints: Parameter Estimation and Performance Bounds

  • Author

    Bo Zhao ; Fan Lam ; Zhi-Pei Liang

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
  • Volume
    33
  • Issue
    9
  • fYear
    2014
  • fDate
    Sept. 2014
  • Firstpage
    1832
  • Lastpage
    1844
  • Abstract
    Magnetic resonance parameter mapping (e.g., T1 mapping, T2 mapping, T2* mapping) is a valuable tool for tissue characterization. However, its practical utility has been limited due to long data acquisition time. This paper addresses this problem with a new model-based parameter mapping method. The proposed method utilizes a formulation that integrates the explicit signal model with sparsity constraints on the model parameters, enabling direct estimation of the parameters of interest from highly undersampled, noisy k-space data. An efficient greedy-pursuit algorithm is described to solve the resulting constrained parameter estimation problem. Estimation-theoretic bounds are also derived to analyze the benefits of incorporating sparsity constraints and benchmark the performance of the proposed method. The theoretical properties and empirical performance of the proposed method are illustrated in a T2 mapping application example using computer simulations.
  • Keywords
    biological tissues; biomedical MRI; greedy algorithms; medical image processing; parameter estimation; T1 mapping method; T2 mapping method; T2* mapping method; explicit signal model; greedy-pursuit algorithm; magnetic resonance parameter mapping method; model-based MR parameter mapping method; parameter estimation; sparsity constraints; tissue characterization; Brain modeling; Data models; Frequency modulation; Matrices; Maximum likelihood estimation; Optimization; Parameter estimation; Cramér-Rao bounds; model-based reconstruction; parameter estimation; parameter mapping; quantitative magnetic resonance imaging; sparsity;
  • fLanguage
    English
  • Journal_Title
    Medical Imaging, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0278-0062
  • Type

    jour

  • DOI
    10.1109/TMI.2014.2322815
  • Filename
    6813689