DocumentCode :
1158778
Title :
Constrained Gaussian mixture model framework for automatic segmentation of MR brain images
Author :
Greenspan, Hayit ; Ruf, Amit ; Goldberger, Jacob
Author_Institution :
Tel Aviv Univ.
Volume :
25
Issue :
9
fYear :
2006
Firstpage :
1233
Lastpage :
1245
Abstract :
An automated algorithm for tissue segmentation of noisy, low-contrast magnetic resonance (MR) images of the brain is presented. A mixture model composed of a large number of Gaussians is used to represent the brain image. Each tissue is represented by a large number of Gaussian components to capture the complex tissue spatial layout. The intensity of a tissue is considered a global feature and is incorporated into the model through tying of all the related Gaussian parameters. The expectation-maximization (EM) algorithm is utilized to learn the parameter-tied, constrained Gaussian mixture model. An elaborate initialization scheme is suggested to link the set of Gaussians per tissue type, such that each Gaussian in the set has similar intensity characteristics with minimal overlapping spatial supports. Segmentation of the brain image is achieved by the affiliation of each voxel to the component of the model that maximized the a posteriori probability. The presented algorithm is used to segment three-dimensional, T1-weighted, simulated and real MR images of the brain into three different tissues, under varying noise conditions. Results are compared with state-of-the-art algorithms in the literature. The algorithm does not use an atlas for initialization or parameter learning. Registration processes are therefore not required and the applicability of the framework can be extended to diseased brains and neonatal brains
Keywords :
Gaussian processes; biomedical MRI; brain; expectation-maximisation algorithm; image representation; image segmentation; medical image processing; MR brain images; automatic image segmentation; expectation-maximization algorithm; image representation; initialization; maximum a posteriori probability; noisy low-contrast magnetic resonance images; parameter learning; parameter-tied constrained Gaussian mixture model; tissue segmentation; Alzheimer´s disease; Brain modeling; Image segmentation; Jacobian matrices; Magnetic liquids; Magnetic noise; Magnetic resonance; Magnetic resonance imaging; Noise reduction; Pediatrics; Constrained model; Gaussian mixture model (GMM); expectation-maximization (EM); image segmentation; magnetic resonance imaging (MRI) brain segmentation; mixture of Gaussians;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2006.880668
Filename :
1677729
Link To Document :
بازگشت