DocumentCode :
1161502
Title :
Fast decoding of codes from algebraic plane curves
Author :
Justesen, J. ; Larsen, K.J. ; Jensen, H.E. ; Høholdt, T.
Author_Institution :
Tech. Univ. of Denmark, Lyngby, Denmark
Volume :
38
Issue :
1
fYear :
1992
fDate :
1/1/1992 12:00:00 AM
Firstpage :
111
Lastpage :
119
Abstract :
Improvement to an earlier decoding algorithm for codes from algebraic geometry is presented. For codes from an arbitrary regular plane curve the authors correct up to d*/2-m2 /8+m/4-9/8 errors, where d* is the designed distance of the code and m is the degree of the curve. The complexity of finding the error locator is O(n7/3 ), where n is the length of the code. For codes from Hermitian curves the complexity of finding the error values, given the error locator, is O(n2), and the same complexity can be obtained in the general case if only d*/2-m2/2 errors are corrected
Keywords :
coding errors; decoding; Hermitian curves; algebraic geometry; algebraic plane curves; arbitrary regular plane curve; codes; error locator; fast decoding; Circuit theory; Decoding; Error correction; Error correction codes; Galois fields; Geometry; Information theory; Polynomials;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.108255
Filename :
108255
Link To Document :
بازگشت