Title :
Cramer-Rao bounds for parametric shape estimation in inverse problems
Author :
Ye, Jong Chul ; Bresler, Yoram ; Moulin, Pierre
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA
fDate :
1/1/2003 12:00:00 AM
Abstract :
We address the problem of computing fundamental performance bounds for estimation of object boundaries from noisy measurements in inverse problems, when the boundaries are parameterized by a finite number of unknown variables. Our model applies to multiple unknown objects, each with its own unknown gray level, or color, and boundary parameterization, on an arbitrary known background. While such fundamental bounds on the performance of shape estimation algorithms can in principle be derived from the Cramer-Rao lower bounds, very few results have been reported due to the difficulty of computing the derivatives of a functional with respect to shape deformation. We provide a general formula for computing Cramer-Rao lower bounds in inverse problems where the observations are related to the object by a general linear transform, followed by a possibly nonlinear and noisy measurement system. As an illustration, we derive explicit formulas for computed tomography, Fourier imaging, and deconvolution problems. The bounds reveal that highly accurate parametric reconstructions are possible in these examples, using severely limited and noisy data.
Keywords :
computerised tomography; deconvolution; image colour analysis; image reconstruction; inverse problems; noise; parameter estimation; Cramer-Rao lower bounds; Fourier imaging; boundary parameterization; color level; computed tomography; deconvolution; general linear transform; gray level; inverse problems; limited data; noisy data; noisy measurement system; noisy measurements; nonlinear measurement system; object boundaries; parametric reconstructions; parametric shape estimation; performance bounds estimation; shape deformation; shape estimation algorithms; Computed tomography; Deconvolution; Image reconstruction; Inverse problems; Maximum likelihood estimation; Multi-stage noise shaping; Noise shaping; Parameter estimation; Shape measurement; Spline;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2002.806249