DocumentCode :
1162092
Title :
The role of abstract algebra in structured estimation theory
Author :
Morgera, Salvatore D.
Author_Institution :
Dept. of Electr. Eng.. McGill Univ., Montreal, Que., Canada
Volume :
38
Issue :
3
fYear :
1992
fDate :
5/1/1992 12:00:00 AM
Firstpage :
1053
Lastpage :
1065
Abstract :
An attempt is made to formalize both structured covariance estimation and autoregressive process parameter estimation in terms of the underlying abstract Jordan algebra, an algebra that differs from the usual noncommutative but associative matrix algebra. The investigation puts one on a firm footing from which to attack future problems in statistical signal processing, rather in the same manner that the introduction of Lie algebra and Lie groups in control theory made a variety of new ideas and developments possible
Keywords :
algebra; estimation theory; information theory; parameter estimation; signal processing; Jordan algebra; abstract algebra; autoregressive process parameter estimation; statistical signal processing; structured covariance estimation; structured estimation theory; Abstract algebra; Computational complexity; Covariance matrix; Estimation theory; Iterative algorithms; Matrices; Maximum likelihood estimation; Quantum mechanics; Signal processing; Yield estimation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.135645
Filename :
135645
Link To Document :
بازگشت