DocumentCode :
1164686
Title :
Synthesis of RLC Ladder Networks by Matrix Tridiagonalization
Author :
Marshall, Thomas G., Jr.
Volume :
16
Issue :
1
fYear :
1969
fDate :
2/1/1969 12:00:00 AM
Firstpage :
39
Lastpage :
46
Abstract :
A vector space formulation of a ladder network synthesis problem is given and algorithms for the solution are obtained, which provide a concise and flexible synthesis method. Specifically, the problem of realizing a specified reflection coefficient with a RLC ladder network is treated as a matrix synthesis problem. The matrix to be synthesized is both tridiagonal and cyclic, properties that are utilized to obtain a solution and relate it to the synthesis procedures employing continued fraction expansions. The solution is effected by tridiagonalization of a pair of matrices, a procedure observed to be a vector space analog of the Euclidean algorithm. Algorithms are given, which permit the user to specify the representation of the vectors that are formed recursively during tridiagonalization. This capability, in effect, permits the polynomials that are formed in continued fraction expansions to be represented as linear combinations of various sets of polynomials, such as the Lagrange interpolation polynomials. Experiments are described, which illustrate the advantages of the new algorithms that allow the representation to be specified.
Keywords :
Computer-aided design; Linear network synthesis; Matrix algebra; RLC ladder networks; Algorithm design and analysis; Functional analysis; Inductance; Interpolation; Network synthesis; Polynomials; Reflection; Tiles; Vectors; Voltage;
fLanguage :
English
Journal_Title :
Circuit Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9324
Type :
jour
DOI :
10.1109/TCT.1969.1082885
Filename :
1082885
Link To Document :
بازگشت